13 research outputs found

    Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems

    Get PDF
    It is unknown what kind of biases modern in the wild face datasets have because of their lack of annotation. A direct consequence of this is that total recognition rates alone only provide limited insight about the generalization ability of a Deep Convolutional Neural Networks (DCNNs). We propose to empirically study the effect of different types of dataset biases on the generalization ability of DCNNs. Using synthetically generated face images, we study the face recognition rate as a function of interpretable parameters such as face pose and light. The proposed method allows valuable details about the generalization performance of different DCNN architectures to be observed and compared. In our experiments, we find that: 1) Indeed, dataset bias has a significant influence on the generalization performance of DCNNs. 2) DCNNs can generalize surprisingly well to unseen illumination conditions and large sampling gaps in the pose variation. 3) Using the presented methodology we reveal that the VGG-16 architecture outperforms the AlexNet architecture at face recognition tasks because it can much better generalize to unseen face poses, although it has significantly more parameters. 4) We uncover a main limitation of current DCNN architectures, which is the difficulty to generalize when different identities to not share the same pose variation. 5) We demonstrate that our findings on synthetic data also apply when learning from real-world data. Our face image generator is publicly available to enable the community to benchmark other DCNN architectures.Comment: Accepted to CVPR 2018 Workshop on Analysis and Modeling of Faces and Gestures (AMFG

    Generative shape and image analysis by combining Gaussian processes and MCMC sampling

    Get PDF
    Fully automatic analysis of faces is important for automatic access control, human computer interaction or for automatically evaluate surveillance videos. For humans it is easy to look at and interpret faces. Assigning attributes, moods or even intentions to the depicted person seem to happen without any difficulty. In contrast computers struggle even for simple questions and still fail to answer more demanding questions like: "Are these two persons looking at each other?" The interpretation of an image depicting a face is facilitated using a generative model for faces. Modeling the variability between persons, illumination, view angle or occlusions lead to a rich abstract representation. The model state encodes comprehensive information reducing the effort needed to solve a wide variety of tasks. However, to use a generative model, first the model needs to be built and secondly the model has to be adapted to a particular image. There exist many highly tuned algorithms for either of these steps. Most algorithms require more or less user input. These algorithms often lack robustness, full automation or wide applicability to different objects or data modalities. Our main contribution in this PhD-thesis is the presentation of a general, probabilistic framework to build and adapt generative models. Using the framework, we exploit information probabilistically in the domain it originates from, independent of the problem domain. The framework combines Gaussian processes and Data-Driven MCMC sampling. The generative models are built using the Gaussian process formulation. To adapt a model we use the Metropolis Hastings algorithm based on a propose-and-verify strategy. The framework consists of different well separated parts. Model building is separated from the adaptation. The adaptation is further separated into update proposals and a verification layer. This allows to adapt, exchange, remove or integrate individual parts without changes to other parts. The framework is presented in the context of facial data analysis. We introduce a new kernel exploiting the symmetry of faces and augment a learned generative model with additional flexibility. We show how a generative model is rigidly aligned, non-rigidly registered or adapted to 2d images with the same basic algorithm. We exploit information from 2d images to constrain 3d registration. We integrate directed proposal into sampling shifting the algorithm towards stochastic optimization. We show how to handle missing data by adapting the used likelihood model. We integrate a discriminative appearance model into the image likelihood model to handle occlusions. We demonstrate the wide applicability of our framework by solving also medical image analysis problems reusing the parts introduced for faces

    Markov Chain Monte Carlo for Automated Face Image Analysis

    Get PDF
    We present a novel fully probabilistic method to interpret a single face image with the 3D Morphable Model. The new method is based on Bayesian inference and makes use of unreliable image-based information. Rather than searching a single optimal solution, we infer the posterior distribution of the model parameters given the target image. The method is a stochastic sampling algorithm with a propose-and-verify architecture based on the Metropolis–Hastings algorithm. The stochastic method can robustly integrate unreliable information and therefore does not rely on feed-forward initialization. The integrative concept is based on two ideas, a separation of proposal moves and their verification with the model (Data-Driven Markov Chain Monte Carlo), and filtering with the Metropolis acceptance rule. It does not need gradients and is less prone to local optima than standard fitters. We also introduce a new collective likelihood which models the average difference between the model and the target image rather than individual pixel differences. The average value shows a natural tendency towards a normal distribution, even when the individual pixel-wise difference is not Gaussian. We employ the new fitting method to calculate posterior models of 3D face reconstructions from single real-world images. A direct application of the algorithm with the 3D Morphable Model leads us to a fully automatic face recognition system with competitive performance on the Multi-PIE database without any database adaptation

    Informed MCMC with Bayesian Neural Networks for Facial Image Analysis

    Full text link
    Computer vision tasks are difficult because of the large variability in the data that is induced by changes in light, background, partial occlusion as well as the varying pose, texture, and shape of objects. Generative approaches to computer vision allow us to overcome this difficulty by explicitly modeling the physical image formation process. Using generative object models, the analysis of an observed image is performed via Bayesian inference of the posterior distribution. This conceptually simple approach tends to fail in practice because of several difficulties stemming from sampling the posterior distribution: high-dimensionality and multi-modality of the posterior distribution as well as expensive simulation of the rendering process. The main difficulty of sampling approaches in a computer vision context is choosing the proposal distribution accurately so that maxima of the posterior are explored early and the algorithm quickly converges to a valid image interpretation. In this work, we propose to use a Bayesian Neural Network for estimating an image dependent proposal distribution. Compared to a standard Gaussian random walk proposal, this accelerates the sampler in finding regions of the posterior with high value. In this way, we can significantly reduce the number of samples needed to perform facial image analysis.Comment: Accepted to the Bayesian Deep Learning Workshop at NeurIPS 201

    Morphable Face Models - An Open Framework

    Full text link
    In this paper, we present a novel open-source pipeline for face registration based on Gaussian processes as well as an application to face image analysis. Non-rigid registration of faces is significant for many applications in computer vision, such as the construction of 3D Morphable face models (3DMMs). Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid deformation models with B-splines and PCA models as examples. GPMM separate problem specific requirements from the registration algorithm by incorporating domain-specific adaptions as a prior model. The novelties of this paper are the following: (i) We present a strategy and modeling technique for face registration that considers symmetry, multi-scale and spatially-varying details. The registration is applied to neutral faces and facial expressions. (ii) We release an open-source software framework for registration and model-building, demonstrated on the publicly available BU3D-FE database. The released pipeline also contains an implementation of an Analysis-by-Synthesis model adaption of 2D face images, tested on the Multi-PIE and LFW database. This enables the community to reproduce, evaluate and compare the individual steps of registration to model-building and 3D/2D model fitting. (iii) Along with the framework release, we publish a new version of the Basel Face Model (BFM-2017) with an improved age distribution and an additional facial expression model

    Analyzing and Reducing the Damage of Dataset Bias to Face Recognition With Synthetic Data

    Get PDF
    It is well known that deep learning approaches to facerecognition suffer from various biases in the available train-ing data. In this work, we demonstrate the large potentialof synthetic data for analyzing and reducing the negativeeffects of dataset bias on deep face recognition systems. Inparticular we explore two complementary application areasfor synthetic face images: 1) Using fully annotated syntheticface images we can study the face recognition rate as afunction of interpretable parameters such as face pose. Thisenables us to systematically analyze the effect of differenttypes of dataset biases on the generalization ability of neu-ral network architectures. Our analysis reveals that deeperneural network architectures can generalize better to un-seen face poses. Furthermore, our study shows that currentneural network architectures cannot disentangle face poseand facial identity, which limits their generalization ability.2) We pre-train neural networks with large-scale syntheticdata that is highly variable in face pose and the number offacial identities. After a subsequent fine-tuning with real-world data, we observe that the damage of dataset bias inthe real-world data is largely reduced. Furthermore, wedemonstrate that the size of real-world datasets can be re-duced by 75% while maintaining competitive face recogni-tion performance. The data and software used in this workare publicly available

    Greedy Structure Learning of Hierarchical Compositional Models

    Get PDF
    In this work, we consider the problem of learning a hierarchical generative model of an object from a set of im-ages which show examples of the object in the presenceof variable background clutter. Existing approaches tothis problem are limited by making strong a-priori assump-tions about the object’s geometric structure and require seg-mented training data for learning. In this paper, we pro-pose a novel framework for learning hierarchical compo-sitional models (HCMs) which do not suffer from the men-tioned limitations. We present a generalized formulation ofHCMs and describe a greedy structure learning frameworkthat consists of two phases: Bottom-up part learning andtop-down model composition. Our framework integratesthe foreground-background segmentation problem into thestructure learning task via a background model. As a result, we can jointly optimize for the number of layers in thehierarchy, the number of parts per layer and a foreground-background segmentation based on class labels only. Weshow that the learned HCMs are semantically meaningfuland achieve competitive results when compared to othergenerative object models at object classification on a stan-dard transfer learning dataset

    Occlusion-aware 3D Morphable Models and an Illumination Prior for Face Image Analysis

    Get PDF
    Faces in natural images are often occluded by a variety of objects. We propose a fully automated, probabilistic and occlusion-aware 3D morphable face model adaptation framework following an analysis-by-synthesis setup. The key idea is to segment the image into regions explained by separate models. Our framework includes a 3D morphable face model, a prototype-based beard model and a simple model for occlusions and background regions. The segmentation and all the model parameters have to be inferred from the single target image. Face model adaptation and segmentation are solved jointly using an expectation-maximization-like procedure. During the E-step, we update the segmentation and in the M-step the face model parameters are updated. For face model adaptation we apply a stochastic sampling strategy based on the Metropolis-Hastings algorithm. For segmentation, we apply loopy belief propagation for inference in a Markov random field. Illumination estimation is critical for occlusion handling. Our combined segmentation and model adaptation needs a proper initialization of the illumination parameters. We propose a RANSAC-based robust illumination estimation technique. By applying this method to a large face image database we obtain a first empirical distribution of real-world illumination conditions. The obtained empirical distribution is made publicly available and can be used as prior in probabilistic frameworks, for regularization or to synthesize data for deep learning methods

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore